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preface
I first encountered Hadoop in the fall of 2008 when I was working on an internet
crawl-and-analysis project at Verisign. We were making discoveries similar to those that
Doug Cutting and others at Nutch had made several years earlier about how to effi-
ciently store and manage terabytes of crawl-and-analyzed data. At the time, we were
getting by with our homegrown distributed system, but the influx of a new data stream
and requirements to join that stream with our crawl data couldn’t be supported by our
existing system in the required timeline. 

 After some research, we came across the Hadoop project, which seemed to be a
perfect fit for our needs—it supported storing large volumes of data and provided a
compute mechanism to combine them. Within a few months, we built and deployed a
MapReduce application encompassing a number of MapReduce jobs, woven together
with our own MapReduce workflow management system, onto a small cluster of 18
nodes. It was a revelation to observe our MapReduce jobs crunching through our data
in minutes. Of course, what we weren’t expecting was the amount of time that we
would spend debugging and performance-tuning our MapReduce jobs. Not to men-
tion the new roles we took on as production administrators—the biggest surprise in
this role was the number of disk failures we encountered during those first few
months supporting production.

 As our experience and comfort level with Hadoop grew, we continued to build
more of our functionality using Hadoop to help with our scaling challenges. We also
started to evangelize the use of Hadoop within our organization and helped kick-start
other projects that were also facing big data challenges. 



PREFACExvi

 The greatest challenge we faced when working with Hadoop, and specifically
MapReduce, was relearning how to solve problems with it. MapReduce is its own fla-
vor of parallel programming, and it’s quite different from the in-JVM programming
that we were accustomed to. The first big hurdle was training our brains to think
MapReduce, a topic which the book Hadoop in Action by Chuck Lam (Manning Publi-
cations, 2010) covers well. 

 After one is used to thinking in MapReduce, the next challenge is typically related
to the logistics of working with Hadoop, such as how to move data in and out of HDFS
and effective and efficient ways to work with data in Hadoop. These areas of Hadoop
haven’t received much coverage, and that’s what attracted me to the potential of this
book—the chance to go beyond the fundamental word-count Hadoop uses and cover-
ing some of the trickier and dirtier aspects of Hadoop. 

 As I’m sure many authors have experienced, I went into this project confidently
believing that writing this book was just a matter of transferring my experiences onto
paper. Boy, did I get a reality check, but not altogether an unpleasant one, because
writing introduced me to new approaches and tools that ultimately helped better my
own Hadoop abilities. I hope that you get as much out of reading this book as I did
writing it.
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about this book
Doug Cutting, the creator of Hadoop, likes to call Hadoop the kernel for big data,
and I would tend to agree. With its distributed storage and compute capabilities,
Hadoop is fundamentally an enabling technology for working with huge datasets.
Hadoop provides a bridge between structured (RDBMS) and unstructured (log files,
XML, text) data and allows these datasets to be easily joined together. This has evolved
from traditional use cases, such as combining OLTP and log files, to more sophisti-
cated uses, such as using Hadoop for data warehousing (exemplified by Facebook)
and the field of data science, which studies and makes new discoveries about data. 

 This book collects a number of intermediary and advanced Hadoop examples and
presents them in a problem/solution format. Each technique addresses a specific task
you’ll face, like using Flume to move log files into Hadoop or using Mahout for pre-
dictive analysis. Each problem is explored step by step, and as you work through them,
you’ll find yourself growing more comfortable with Hadoop and at home in the world
of big data. 

 This hands-on book targets users who have some practical experience with
Hadoop and understand the basic concepts of MapReduce and HDFS. Manning’s
Hadoop in Action by Chuck Lam contains the necessary prerequisites to understand
and apply the techniques covered in this book. 

 Many techniques in this book are Java-based, which means readers are expected to
possess an intermediate-level knowledge of Java. An excellent text for all levels of Java
users is Effective Java, Second Edition by Joshua Bloch (Addison-Wesley, 2008). 
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Roadmap

This book has 10 chapters divided into four parts. 
 Part 1 contains two chapters that form the introduction to this book. They review

Hadoop basics and look at how to get Hadoop up and running on a single host. YARN,
which is new in Hadoop version 2, is also examined, and some operational tips are
provided for performing basic functions in YARN. 

 Part 2, “Data logistics,” consists of three chapters that cover the techniques and
tools required to deal with data fundamentals, how to work with various data formats,
how to organize and optimize your data, and getting data into and out of Hadoop.
Picking the right format for your data and determining how to organize data in HDFS
are the first items you’ll need to address when working with Hadoop, and they’re cov-
ered in chapters 3 and 4 respectively. Getting data into Hadoop is one of the bigger
hurdles commonly encountered when working with Hadoop, and chapter 5 is dedi-
cated to looking at a variety of tools that work with common enterprise data sources. 

 Part 3 is called “Big data patterns,” and it looks at techniques to help you work effec-
tively with large volumes of data. Chapter 6 covers how to represent data such as graphs
for use with MapReduce, and it looks at several algorithms that operate on graph data.
Chapter 7 looks at more advanced data structures and algorithms such as graph pro-
cessing and using HyperLogLog for working with large datasets. Chapter 8 looks at how
to tune, debug, and test MapReduce performance issues, and it also covers a number
of techniques to help make your jobs run faster. 

 Part 4 is titled “Beyond MapReduce,” and it examines a number of technologies
that make it easier to work with Hadoop. Chapter 9 covers the most prevalent and
promising SQL technologies for data processing on Hadoop, and Hive, Impala, and
Spark SQL are examined. The final chapter looks at how to write your own YARN appli-
cation, and it provides some insights into some of the more advanced features you can
use in your applications.

 The appendix covers instructions for the source code that accompanies this book,
as well as installation instructions for Hadoop and all the other related technologies
covered in the book. 

 Finally, there are two bonus chapters available from the publisher’s website at
www.manning.com/HadoopinPracticeSecondEdition: chapter 11 “Integrating R and
Hadoop for statistics and more” and chapter 12 “Predictive analytics with Mahout.”

What’s new in the second edition?

This second edition covers Hadoop 2, which at the time of writing is the current
production-ready version of Hadoop. The first edition of the book covered Hadoop 0.22
(Hadoop 1 wasn’t yet out), and Hadoop 2 has turned the world upside-down and
opened up the Hadoop platform to processing paradigms beyond MapReduce. YARN,
the new scheduler and application manager in Hadoop 2, is complex and new to the
community, which prompted me to dedicate a new chapter 2 to covering YARN basics
and to discussing how MapReduce now functions as a YARN application.

www.manning.com/HadoopinPracticeSecondEdition
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 Parquet has also recently emerged as a new way to store data in HDFS—its columnar
format can yield both space and time efficiencies in your data pipelines, and it’s quickly
becoming the ubiquitous way to store data. Chapter 4 includes extensive coverage of
Parquet, which includes how Parquet supports sophisticated object models such as Avro
and how various Hadoop tools can use Parquet.

 How data is being ingested into Hadoop has also evolved since the first edition,
and Kafka has emerged as the new data pipeline, which serves as the transport tier
between your data producers and data consumers, where a consumer would be a sys-
tem such as Camus that can pull data from Kafka into HDFS. Chapter 5, which covers
moving data into and out of Hadoop, now includes coverage of Kafka and Camus.

 There are many new technologies that YARN now can support side by side in the
same cluster, and some of the more exciting and promising technologies are covered
in the new part 4, titled “Beyond MapReduce,” where I cover some compelling new
SQL technologies such as Impala and Spark SQL. The last chapter, also new for this
edition, looks at how you can write your own YARN application, and it’s packed with
information about important features to support your YARN application.

Getting help

You’ll no doubt have many questions when working with Hadoop. Luckily, between
the wikis and a vibrant user community, your needs should be well covered:

■ The main wiki is located at http://wiki.apache.org/hadoop/, and it contains
useful presentations, setup instructions, and troubleshooting instructions. 

■ The Hadoop Common, HDFS, and MapReduce mailing lists can all be found at
http://hadoop.apache.org/mailing_lists.html. 

■ “Search Hadoop” is a useful website that indexes all of Hadoop and its ecosys-
tem projects, and it provides full-text search capabilities: http://search-
hadoop.com/. 

■ You’ll find many useful blogs you should subscribe to in order to keep on top of
current events in Hadoop. This preface includes a selection of my favorites: 

o Cloudera and Hortonworks are both prolific writers of practical applications
on Hadoop—reading their blogs is always educational: http://www.cloudera
.com/blog/ and http://hortonworks.com/blog/. 

o Michael Noll is one of the first bloggers to provide detailed setup instructions
for Hadoop, and he continues to write about real-life challenges:
www.michael-noll.com/. 

o There’s a plethora of active Hadoop Twitter users that you may want to follow,
including Arun Murthy (@acmurthy), Tom White (@tom_e_white), Eric Sam-
mer (@esammer), Doug Cutting (@cutting), and Todd Lipcon (@tlipcon).
The Hadoop project tweets on @hadoop.

http://search-hadoop.com/
http://search-hadoop.com/
http://www.cloudera.com/blog/
http://www.cloudera.com/blog/
www.michael-noll.com/
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Code conventions and downloads

All source code in listings or in text is presented in a fixed-width font like this to
separate it from ordinary text. Code annotations accompany many of the listings,
highlighting important concepts.

 All of the text and examples in this book work with Hadoop 2.x, and most of the
MapReduce code is written using the newer org.apache.hadoop.mapreduce Map-
Reduce APIs. The few examples that use the older org.apache.hadoop.mapred pack-
age are usually the result of working with a third-party library or a utility that only
works with the old API. 

 All of the code used in this book is available on GitHub at https://github.com/
alexholmes/hiped2 and also from the publisher’s website at www.manning.com/
HadoopinPracticeSecondEdition. The first section in the appendix shows you how to
download, install, and get up and running with the code.

Third-party libraries

I use a number of third-party libraries for convenience purposes. They’re included in
the Maven-built JAR, so there’s no extra work required to work with these libraries. 

Datasets

Throughout this book, you’ll work with three datasets to provide some variety in the
examples. All the datasets are small to make them easy to work with. Copies of the
exact data used are available in the GitHub repository in the https://github.com/
alexholmes/hiped2/tree/master/test-data directory. I also sometimes use data that’s
specific to a chapter, and it’s available within chapter-specific subdirectories under the
same GitHub location. 

NASDAQ financial stocks

I downloaded the NASDAQ daily exchange data from InfoChimps (www.infochimps
.com). I filtered this huge dataset down to just five stocks and their start-of-year values
from 2000 through 2009. The data used for this book is available on GitHub at https://
github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt.

 The data is in CSV form, and the fields are in the following order:

Symbol,Date,Open,High,Low,Close,Volume,Adj Close

Apache log data

I created a sample log file in Apache Common Log Format1 with some fake Class E
IP addresses and some dummy resources and response codes. The file is available
on GitHub at https://github.com/alexholmes/hiped2/blob/master/test-data/
apachelog.txt. 

1 See http://httpd.apache.org/docs/1.3/logs.html#common.

https://github.com/alexholmes/hiped2
https://github.com/alexholmes/hiped2
https://github.com/alexholmes/hiped2/blob/master/test-data/apachelog.txt
https://github.com/alexholmes/hiped2/blob/master/test-data/apachelog.txt
https://github.com/alexholmes/hiped2/tree/master/test-data
https://github.com/alexholmes/hiped2/tree/master/test-data
https://github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt
https://github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt
www.manning.com/HadoopinPracticeSecondEdition
www.manning.com/HadoopinPracticeSecondEdition
www.infochimps.com
www.infochimps.com
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Names

Names were retrieved from the U.S. government census at www.census.gov/genealogy/
www/data/1990surnames/dist.all.last, and this data is available at https://
github.com/alexholmes/hiped2/blob/master/test-data/names.txt. 

Author Online

Purchase of Hadoop in Practice, Second Edition includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
HadoopinPractice, SecondEdition. This page provides information on how to get on
the forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum. It also provides links to the source code for the examples in the
book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the Author Online forum remains voluntary (and unpaid). We
suggest you try asking the author challenging questions lest his interest strays!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://www.manning.com/HadoopinPractice
http://www.manning.com/HadoopinPractice
https://github.com/alexholmes/hiped2/blob/master/test-data/names.txt
https://github.com/alexholmes/hiped2/blob/master/test-data/names.txt
www.census.gov/genealogy/www/data/1990surnames/dist.all.last
www.census.gov/genealogy/www/data/1990surnames/dist.all.last
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about the cover illustration
The figure on the cover of Hadoop in Practice, Second Edition is captioned “Momak from
Kistanja, Dalmatia.” The illustration is taken from a reproduction of an album of tra-
ditional Croatian costumes from the mid-nineteenth century by Nikola Arsenovic,
published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations
were obtained from a helpful librarian at the Ethnographic Museum in Split, itself sit-
uated in the Roman core of the medieval center of the town: the ruins of Emperor
Diocletian’s retirement palace from around AD 304. The book includes finely colored
illustrations of figures from different regions of Croatia, accompanied by descriptions
of the costumes and of everyday life.

 Kistanja is a small town located in Bukovica, a geographical region in Croatia. It is
situated in northern Dalmatia, an area rich in Roman and Venetian history. The word
“momak” in Croatian means a bachelor, beau, or suitor—a single young man who is of
courting age—and the young man on the cover, looking dapper in a crisp, white linen
shirt and a colorful, embroidered vest, is clearly dressed in his finest clothes, which
would be worn to church and for festive occasions—or to go calling on a young lady.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—
certainly for a more varied and fast-paced technological life.
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 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.



Part 1

Background
 and fundamentals

Part 1 of this book consists of chapters 1 and 2, which cover the important
Hadoop fundamentals. 

 Chapter 1 covers Hadoop’s components and its ecosystem and provides
instructions for installing a pseudo-distributed Hadoop setup on a single host,
along with a system that will enable you to run all of the examples in the book.
Chapter 1 also covers the basics of Hadoop configuration, and walks you
through how to write and run a MapReduce job on your new setup. 

 Chapter 2 introduces YARN, which is a new and exciting development in
Hadoop version 2, transitioning Hadoop from being a MapReduce-only system
to one that can support many execution engines. Given that YARN is new to the
community, the goal of this chapter is to look at some basics such as its compo-
nents, how configuration works, and also how MapReduce works as a YARN
application. Chapter 2 also provides an overview of some applications that YARN
has enabled to execute on Hadoop, such as Spark and Storm.
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Hadoop in a heartbeat

We live in the age of big data, where the data volumes we need to work with on a
day-to-day basis have outgrown the storage and processing capabilities of a single
host. Big data brings with it two fundamental challenges: how to store and work
with voluminous data sizes, and more important, how to understand data and turn
it into a competitive advantage. 

 Hadoop fills a gap in the market by effectively storing and providing computa-
tional capabilities for substantial amounts of data. It’s a distributed system made up
of a distributed filesystem, and it offers a way to parallelize and execute programs
on a cluster of machines (see figure 1.1). You’ve most likely come across Hadoop
because it’s been adopted by technology giants like Yahoo!, Facebook, and Twitter
to address their big data needs, and it’s making inroads across all industrial sectors. 

 Because you’ve come to this book to get some practical experience with
Hadoop and Java,1 I’ll start with a brief overview and then show you how to install

This chapter covers
■ Examining how the core Hadoop system works
■ Understanding the Hadoop ecosystem
■ Running a MapReduce job

1 To benefit from this book, you should have some practical experience with Hadoop and understand the
basic concepts of MapReduce and HDFS (covered in Manning’s Hadoop in Action by Chuck Lam, 2010).
Further, you should have an intermediate-level knowledge of Java—Effective Java, 2nd Edition by Joshua
Bloch (Addison-Wesley, 2008) is an excellent resource on this topic.
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Hadoop and run a MapReduce job. By the end of this chapter, you’ll have had a basic
refresher on the nuts and bolts of Hadoop, which will allow you to move on to the
more challenging aspects of working with it. 

 Let’s get started with a detailed overview. 

1.1 What is Hadoop?
Hadoop is a platform that provides both distributed storage and computational capa-
bilities. Hadoop was first conceived to fix a scalability issue that existed in Nutch,2 an
open source crawler and search engine. At the time, Google had published papers
that described its novel distributed filesystem, the Google File System (GFS), and
MapReduce, a computational framework for parallel processing. The successful
implementation of these papers’ concepts in Nutch resulted in it being split into two
separate projects, the second of which became Hadoop, a first-class Apache project. 

 In this section we’ll look at Hadoop from an architectural perspective, examine
how industry uses it, and consider some of its weaknesses. Once we’ve covered this
background, we’ll look at how to install Hadoop and run a MapReduce job. 

 Hadoop proper, as shown in figure 1.2, is a distributed master-slave architecture3

that consists of the following primary components:

2 The Nutch project, and by extension Hadoop, was led by Doug Cutting and Mike Cafarella. 
3 A model of communication where one process, called the master, has control over one or more other pro-

cesses, called slaves. 

Server cloud

Distributed computation

Distributed storage

Hadoop runs on
commodity hardware.

The computation tier is a
general-purpose scheduler and

a distributed processing
framework called MapReduce.

Storage is provided via
a distributed filesystem

called HDFS.

Figure 1.1 The Hadoop environment is a distributed system that runs on commodity hardware.
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■ Hadoop Distributed File System (HDFS) for data storage.
■ Yet Another Resource Negotiator (YARN), introduced in Hadoop 2, a general-

purpose scheduler and resource manager. Any YARN application can run on a
Hadoop cluster.

■ MapReduce, a batch-based computational engine. In Hadoop 2, MapReduce is
implemented as a YARN application.

Traits intrinsic to Hadoop are data partitioning and parallel computation of large
datasets. Its storage and computational capabilities scale with the addition of hosts to
a Hadoop cluster; clusters with hundreds of hosts can easily reach data volumes in
the petabytes. 

 In the first step in this section, we’ll examine the HDFS, YARN, and MapReduce
architectures. 

1.1.1 Core Hadoop components

To understand Hadoop’s architecture we’ll start by looking at the basics of HDFS. 

HDFS

HDFS is the storage component of Hadoop. It’s a distributed filesystem that’s modeled
after the Google File System (GFS) paper.4 HDFS is optimized for high throughput and
works best when reading and writing large files (gigabytes and larger). To support this
throughput, HDFS uses unusually large (for a filesystem) block sizes and data locality
optimizations to reduce network input/output (I/O). 

 Scalability and availability are also key traits of HDFS, achieved in part due to data
replication and fault tolerance. HDFS replicates files for a configured number of times,
is tolerant of both software and hardware failure, and automatically re-replicates data
blocks on nodes that have failed. 

4 See “The Google File System‚” http://research.google.com/archive/gfs.html.

The HDFS master is responsible
for partitioning the storage across
the slave nodes and keeping track

of where data is located.

The MapReduce master is
responsible for organizing where
computational work should be
scheduled on the slave nodes.

The YARN master performs
the actual scheduling of work

for YARN applications.

YARN slave MapReduce slave HDFS slave

YARN master MapReduce master HDFS master

YARN slave MapReduce slave HDFS slave

YARN slave MapReduce slave HDFS slave

Figure 1.2 High-level Hadoop 2 master-slave architecture
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Figure 1.3 shows a logical representation of the components in HDFS: the NameNode
and the DataNode. It also shows an application that’s using the Hadoop filesystem
library to access HDFS. 

 Hadoop 2 introduced two significant new features for HDFS—Federation and
High Availability (HA):

■ Federation allows HDFS metadata to be shared across multiple NameNode
hosts, which aides with HDFS scalability and also provides data isolation, allow-
ing different applications or teams to run their own NameNodes without fear of
impacting other NameNodes on the same cluster.

■ High Availability in HDFS removes the single point of failure that existed in
Hadoop 1, wherein a NameNode disaster would result in a cluster outage. HDFS
HA also offers the ability for failover (the process by which a standby Name-
Node takes over work from a failed primary NameNode) to be automated.

The HDFS NameNode keeps in memory the
metadata about the filesystem such as which
DataNodes manage the blocks for each file.

Files are made up of blocks, and each file
can be replicated multiple times, meaning
there are many identical copies of each

block for the file (by default, 3).

DataNodes communicate
with each other for
pipelining file reads

and writes.

Client
application

Hadoop
filesystem

client

HDFS clients talk to the
NameNode for metadata-related

activities and DataNodes for
reading and writing files.

/tmp/file1.txt Block A

Block B

DataNode 2

DataNode 3

DataNode 1

DataNode 3

NameNode

C

DataNode 1

D

B A

DataNode 2

C

D B

DataNode 3

A

C

Figure 1.3 An HDFS client communicating with the master NameNode and slave DataNodes
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Now that you have a bit of HDFS knowledge, it’s time to look at YARN, Hadoop’s scheduler.

YARN

YARN is Hadoop’s distributed resource scheduler. YARN is new to Hadoop version 2
and was created to address challenges with the Hadoop 1 architecture: 

■ Deployments larger than 4,000 nodes encountered scalability issues, and add-
ing additional nodes didn’t yield the expected linear scalability improvements. 

■ Only MapReduce workloads were supported, which meant it wasn’t suited to
run execution models such as machine learning algorithms that often require
iterative computations.

For Hadoop 2 these problems were solved by extracting the scheduling function
from MapReduce and reworking it into a generic application scheduler, called YARN.
With this change, Hadoop clusters are no longer limited to running MapReduce
workloads; YARN enables a new set of workloads to be natively supported on Hadoop,
and it allows alternative processing models, such as graph processing and stream pro-
cessing, to coexist with MapReduce. Chapters 2 and 10 cover YARN and how to write
YARN applications.

 YARN’s architecture is simple because its primary role is to schedule and manage
resources in a Hadoop cluster. Figure 1.4 shows a logical representation of the core
components in YARN: the ResourceManager and the NodeManager. Also shown are
the components specific to YARN applications, namely, the YARN application client,
the ApplicationMaster, and the container.

 To fully realize the dream of a generalized distributed platform, Hadoop 2 intro-
duced another change—the ability to allocate containers in various configurations.

A YARN client is
responsible for creating
the YARN application.

Client ResourceManager

ApplicationMaster 

NodeManager

Container

The ResourceManager is the
YARN master process and is responsible
for scheduling and managing resources,

called “containers.” 

The ApplicationMaster is created by
the ResourceManager and is responsible
for requesting containers to perform

application-specific work.

The NodeManager is the slave
YARN process that runs on each node.

It is responsible for launching and
managing containers.

Containers are YARN
application-specific processes
that perform some function
pertinent to the application.

Figure 1.4 The logical YARN architecture showing typical communication between the core YARN 
components and YARN application components
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Hadoop 1 had the notion of “slots,” which were a fixed number of map and reduce pro-
cesses that were allowed to run on a single node. This was wasteful in terms of cluster
utilization and resulted in underutilized resources during MapReduce operations, and
it also imposed memory limits for map and reduce tasks. With YARN, each container
requested by an ApplicationMaster can have disparate memory and CPU traits, and this
gives YARN applications full control over the resources they need to fulfill their work.

 You’ll work with YARN in more detail in chapters 2 and 10, where you’ll learn how
YARN works and how to write a YARN application. Next up is an examination of
MapReduce, Hadoop’s computation engine. 

MAPREDUCE

MapReduce is a batch-based, distributed computing framework modeled after
Google’s paper on MapReduce.5 It allows you to parallelize work over a large amount
of raw data, such as combining web logs with relational data from an OLTP database to
model how users interact with your website. This type of work, which could take days
or longer using conventional serial programming techniques, can be reduced to min-
utes using MapReduce on a Hadoop cluster. 

 The MapReduce model simplifies parallel processing by abstracting away the com-
plexities involved in working with distributed systems, such as computational paral-
lelization, work distribution, and dealing with unreliable hardware and software. With
this abstraction, MapReduce allows the programmer to focus on addressing business
needs rather than getting tangled up in distributed system complications. 

 MapReduce decomposes work submitted by a client into small parallelized map
and reduce tasks, as shown in figure 1.5. The map and reduce constructs used in

5 See “MapReduce: Simplified Data Processing on Large Clusters,” http://research.google.com/archive/
mapreduce.html.

Hadoop MapReduce
master

Map

Map

Map

Reduce

Client

Input
data

Output
data

The client submits
a MapReduce job.

MapReduce decomposes the
job into map and reduce tasks
and schedules them for remote

execution on the slave
nodes.

Job

Job parts Job parts

Reduce

Figure 1.5 A client submitting 
a job to MapReduce, breaking 
the work into small map and 
reduce tasks

http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
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MapReduce are borrowed from those found in the Lisp functional programming lan-
guage, and they use a shared-nothing model to remove any parallel execution interde-
pendencies that could add unwanted synchronization points or state sharing.6

 The role of the programmer is to define map and reduce functions where the map
function outputs key/value tuples, which are processed by reduce functions to pro-
duce the final output. Figure 1.6 shows a pseudocode definition of a map function
with regard to its input and output.

 The power of MapReduce occurs between the map output and the reduce input in
the shuffle and sort phases, as shown in figure 1.7. 

6 A shared-nothing architecture is a distributed computing concept that represents the notion that each node
is independent and self-sufficient. 

The map function takes as input a key/value pair, which
represents a logical record from the input data source.

In the case of a file, this could be a line, or if the
input source is a table in a database, it could be a row.

list(key2, value2)map(key1, value1)

The map function produces zero or more output key/value pairs for
one input pair. For example, if the map function is a filtering

map function, it may only produce output if a certain condition is
met. Or it could be performing a demultiplexing operation, where

a single key/value yields multiple key/value output pairs.

Figure 1.6 A 
logical view of the 
map function that 
takes a key/value 
pair as input

The shuffle and sort phases are responsible for two primary activities: determining
the reducer that should receive the map output key/value pair (called partitioning);

and ensuring that all the input keys for a given reducer are sorted. 

cat,doc1

dog,doc1

hamster,doc1

cat,doc2

dog,doc2

hampster,doc2

chipmunk,doc2

Map output Shuffle + sort

Mapper 1

Mapper 2

cat,list(doc1,doc2)

dog,list(doc1,doc2)

hamster,list(doc1,doc2)

chipmunk,list(doc2)
Reducer 2

Sorted reduce Input

 Map outputs for the same key (such as “hamster”)
go to the same reducer and are then combined to

form a single input record for the reducer.

Each reducer has all of
its input keys sorted.

Reducer 1

Reducer 3

Figure 1.7 MapReduce’s shuffle and sort phases




