
Alex Holmes

SECOND EDITION

M A N N I N G

IN PRACTICE

INCLUDES 104 TECHNIQUES

Praise for the First Edition of
Hadoop in Practice

A new book from Manning, Hadoop in Practice, is definitely the most modern book
on the topic. Important subjects, like what commercial variants such as MapR offer,
and the many different releases and APIs get uniquely good coverage in this book.

—Ted Dunning, Chief Application Architect, MapR Technologies

Comprehensive coverage of advanced Hadoop usage, including high-quality code
samples.

—Chris Nauroth, Senior Staff Software Engineer
The Walt Disney Company

A very pragmatic and broad overview of Hadoop and the Hadoop tools ecosystem,
with a wide set of interesting topics that tickle the creative brain.

—Mark Kemna, Chief Technology Officer, Brilig

A practical introduction to the Hadoop ecosystem.
—Philipp K. Janert, Principal Value, LLC

This book is the horizontal roof that each of the pillars of individual Hadoop
technology books hold. It expertly ties together all the Hadoop ecosystem technologies.

—Ayon Sinha, Big Data Architect, Britely

I would take this book on my path to the future.
—Alexey Gayduk, Senior Software Engineer, Grid Dynamics

A high-quality and well-written book that is packed with useful examples. The breadth
and detail of the material is by far superior to any other Hadoop reference guide. It is
perfect for anyone who likes to learn new tools/technologies while following pragmatic,
real-world examples.

—Amazon reviewer

Hadoop in Practice
Second Edition

ALEX HOLMES

M A N N I N G
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Cynthia Kane
Manning Publications Co. Copyeditor: Andy Carroll
20 Baldwin Road Proofreader: Melody Dolab
Shelter Island, NY 11964 Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617292224
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

www.manning.com

v

brief contents
PART 1 BACKGROUND AND FUNDAMENTALS1

1 ■ Hadoop in a heartbeat 3

2 ■ Introduction to YARN 22

PART 2 DATA LOGISTICS ...59

3 ■ Data serialization—working with text and beyond 61

4 ■ Organizing and optimizing data in HDFS 139

5 ■ Moving data into and out of Hadoop 174

PART 3 BIG DATA PATTERNS ..253

6 ■ Applying MapReduce patterns to big data 255

7 ■ Utilizing data structures and algorithms at scale 302

8 ■ Tuning, debugging, and testing 337

PART 4 BEYOND MAPREDUCE ...385

9 ■ SQL on Hadoop 387

10 ■ Writing a YARN application 425

vii

contents
preface xv
acknowledgments xvii
about this book xviii
about the cover illustration xxiii

PART 1 BACKGROUND AND FUNDAMENTALS..........................1

1 Hadoop in a heartbeat 3
1.1 What is Hadoop? 4

Core Hadoop components 5 ■ The Hadoop ecosystem 10
Hardware requirements 11 ■ Hadoop distributions 12 ■ Who’s
using Hadoop? 14 ■ Hadoop limitations 15

1.2 Getting your hands dirty with MapReduce 17

1.3 Summary 21

2 Introduction to YARN 22
2.1 YARN overview 23

Why YARN? 24 ■ YARN concepts and components 26
YARN configuration 29

TECHNIQUE 1 Determining the configuration of your cluster 29
Interacting with YARN 31

CONTENTSviii

TECHNIQUE 2 Running a command on your YARN cluster 31
TECHNIQUE 3 Accessing container logs 32
TECHNIQUE 4 Aggregating container log files 36

YARN challenges 39

2.2 YARN and MapReduce 40
Dissecting a YARN MapReduce application 40 ■ Configuration 42
Backward compatibility 46

TECHNIQUE 5 Writing code that works on Hadoop versions 1
and 2 47

Running a job 48

TECHNIQUE 6 Using the command line to run a job 49
Monitoring running jobs and viewing archived jobs 49
Uber jobs 50

TECHNIQUE 7 Running small MapReduce jobs 50

2.3 YARN applications 52
NoSQL 53 ■ Interactive SQL 54 ■ Graph processing 54
Real-time data processing 55 ■ Bulk synchronous parallel 55
MPI 56 ■ In-memory 56 ■ DAG execution 56

2.4 Summary 57

PART 2 DATA LOGISTICS...59

3 Data serialization—working with text and beyond 61
3.1 Understanding inputs and outputs in MapReduce 62

Data input 63 ■ Data output 66

3.2 Processing common serialization formats 68
XML 69

TECHNIQUE 8 MapReduce and XML 69
JSON 72

TECHNIQUE 9 MapReduce and JSON 73

3.3 Big data serialization formats 76
Comparing SequenceFile, Protocol Buffers, Thrift, and Avro 76
SequenceFile 78

TECHNIQUE 10 Working with SequenceFiles 80
TECHNIQUE 11 Using SequenceFiles to encode Protocol

Buffers 87
Protocol Buffers 91 ■ Thrift 92 ■ Avro 93

TECHNIQUE 12 Avro’s schema and code generation 93

CONTENTS ix

TECHNIQUE 13 Selecting the appropriate way to use Avro in
MapReduce 98

TECHNIQUE 14 Mixing Avro and non-Avro data in MapReduce 99
TECHNIQUE 15 Using Avro records in MapReduce 102
TECHNIQUE 16 Using Avro key/value pairs in MapReduce 104
TECHNIQUE 17 Controlling how sorting works in

MapReduce 108
TECHNIQUE 18 Avro and Hive 108
TECHNIQUE 19 Avro and Pig 111

3.4 Columnar storage 113
Understanding object models and storage formats 115 ■ Parquet and the
Hadoop ecosystem 116 ■ Parquet block and page sizes 117

TECHNIQUE 20 Reading Parquet files via the command
line 117

TECHNIQUE 21 Reading and writing Avro data in Parquet with
Java 119

TECHNIQUE 22 Parquet and MapReduce 120
TECHNIQUE 23 Parquet and Hive/Impala 125
TECHNIQUE 24 Pushdown predicates and projection with

Parquet 126
Parquet limitations 128

3.5 Custom file formats 129
Input and output formats 129

TECHNIQUE 25 Writing input and output formats for CSV 129
The importance of output committing 137

3.6 Chapter summary 138

4 Organizing and optimizing data in HDFS 139
4.1 Data organization 140

Directory and file layout 140 ■ Data tiers 141 ■ Partitioning 142

TECHNIQUE 26 Using MultipleOutputs to partition your
data 142

TECHNIQUE 27 Using a custom MapReduce partitioner 145
Compacting 148

TECHNIQUE 28 Using filecrush to compact data 149
TECHNIQUE 29 Using Avro to store multiple small binary

files 151
Atomic data movement 157

4.2 Efficient storage with compression 158
TECHNIQUE 30 Picking the right compression codec for your

data 159

CONTENTSx

TECHNIQUE 31 Compression with HDFS, MapReduce, Pig,
and Hive 163

TECHNIQUE 32 Splittable LZOP with MapReduce, Hive, and
Pig 168

4.3 Chapter summary 173

5 Moving data into and out of Hadoop 174
5.1 Key elements of data movement 175

5.2 Moving data into Hadoop 177
Roll your own ingest 177

TECHNIQUE 33 Using the CLI to load files 178
TECHNIQUE 34 Using REST to load files 180
TECHNIQUE 35 Accessing HDFS from behind a firewall 183
TECHNIQUE 36 Mounting Hadoop with NFS 186
TECHNIQUE 37 Using DistCp to copy data within and between

clusters 188
TECHNIQUE 38 Using Java to load files 194

Continuous movement of log and binary files into HDFS 196

TECHNIQUE 39 Pushing system log messages into HDFS with
Flume 197

TECHNIQUE 40 An automated mechanism to copy files into
HDFS 204

TECHNIQUE 41 Scheduling regular ingress activities with
Oozie 209

Databases 214

TECHNIQUE 42 Using Sqoop to import data from MySQL 215
HBase 227

TECHNIQUE 43 HBase ingress into HDFS 227
TECHNIQUE 44 MapReduce with HBase as a data source 230

Importing data from Kafka 232

5.3 Moving data into Hadoop 234
TECHNIQUE 45 Using Camus to copy Avro data from Kafka

into HDFS 234

5.4 Moving data out of Hadoop 241
Roll your own egress 241

TECHNIQUE 46 Using the CLI to extract files 241
TECHNIQUE 47 Using REST to extract files 242
TECHNIQUE 48 Reading from HDFS when behind a

firewall 243
TECHNIQUE 49 Mounting Hadoop with NFS 243
TECHNIQUE 50 Using DistCp to copy data out of Hadoop 244

CONTENTS xi

TECHNIQUE 51 Using Java to extract files 245
Automated file egress 246

TECHNIQUE 52 An automated mechanism to export files from
HDFS 246

Databases 247

TECHNIQUE 53 Using Sqoop to export data to MySQL 247
NoSQL 251

5.5 Chapter summary 252

PART 3 BIG DATA PATTERNS..253

6 Applying MapReduce patterns to big data 255
6.1 Joining 256

TECHNIQUE 54 Picking the best join strategy for your data 257
TECHNIQUE 55 Filters, projections, and pushdowns 259

Map-side joins 260

TECHNIQUE 56 Joining data where one dataset can fit into
memory 261

TECHNIQUE 57 Performing a semi-join on large datasets 264
TECHNIQUE 58 Joining on presorted and prepartitioned

data 269
Reduce-side joins 271

TECHNIQUE 59 A basic repartition join 271
TECHNIQUE 60 Optimizing the repartition join 275
TECHNIQUE 61 Using Bloom filters to cut down on shuffled

data 279
Data skew in reduce-side joins 283

TECHNIQUE 62 Joining large datasets with high join-key
cardinality 284

TECHNIQUE 63 Handling skews generated by the hash
partitioner 286

6.2 Sorting 287
Secondary sort 288

TECHNIQUE 64 Implementing a secondary sort 289
Total order sorting 294

TECHNIQUE 65 Sorting keys across multiple reducers 294

6.3 Sampling 297
TECHNIQUE 66 Writing a reservoir-sampling InputFormat 297

6.4 Chapter summary 301

CONTENTSxii

7 Utilizing data structures and algorithms at scale 302
7.1 Modeling data and solving problems with graphs 303

Modeling graphs 304 ■ Shortest-path algorithm 304

TECHNIQUE 67 Find the shortest distance between two
users 305

Friends-of-friends algorithm 313

TECHNIQUE 68 Calculating FoFs 313
Using Giraph to calculate PageRank over a web graph 319

7.2 Modeling data and solving problems with graphs 321
TECHNIQUE 69 Calculate PageRank over a web graph 322

7.3 Bloom filters 326
TECHNIQUE 70 Parallelized Bloom filter creation in

MapReduce 328

7.4 HyperLogLog 333
A brief introduction to HyperLogLog 333

TECHNIQUE 71 Using HyperLogLog to calculate unique
counts 335

7.5 Chapter summary 336

8 Tuning, debugging, and testing 337
8.1 Measure, measure, measure 338

8.2 Tuning MapReduce 339
Common inefficiencies in MapReduce jobs 339

TECHNIQUE 72 Viewing job statistics 340
Map optimizations 343

TECHNIQUE 73 Data locality 343
TECHNIQUE 74 Dealing with a large number of input

splits 344
TECHNIQUE 75 Generating input splits in the cluster with

YARN 346
Shuffle optimizations 347

TECHNIQUE 76 Using the combiner 347
TECHNIQUE 77 Blazingly fast sorting with binary

comparators 349
TECHNIQUE 78 Tuning the shuffle internals 353

Reducer optimizations 356

TECHNIQUE 79 Too few or too many reducers 356
General tuning tips 357

CONTENTS xiii

TECHNIQUE 80 Using stack dumps to discover unoptimized
user code 358

TECHNIQUE 81 Profiling your map and reduce tasks 360

8.3 Debugging 362
Accessing container log output 362

TECHNIQUE 82 Examining task logs 362
Accessing container start scripts 363

TECHNIQUE 83 Figuring out the container startup
command 363

Debugging OutOfMemory errors 365

TECHNIQUE 84 Force container JVMs to generate a heap
dump 365

MapReduce coding guidelines for effective debugging 365

TECHNIQUE 85 Augmenting MapReduce code for better de
bugging 365

8.4 Testing MapReduce jobs 368
Essential ingredients for effective unit testing 368 ■ MRUnit 370

TECHNIQUE 86 Using MRUnit to unit-test MapReduce 371
LocalJobRunner 378

TECHNIQUE 87 Heavyweight job testing with the
LocalJobRunner 378

MiniMRYarnCluster 381

TECHNIQUE 88 Using MiniMRYarnCluster to test your jobs 381
Integration and QA testing 382

8.5 Chapter summary 383

PART 4 BEYOND MAPREDUCE385

9 SQL on Hadoop 387
9.1 Hive 388

Hive basics 388 ■ Reading and writing data 391

TECHNIQUE 89 Working with text files 391
TECHNIQUE 90 Exporting data to local disk 395

User-defined functions in Hive 396

TECHNIQUE 91 Writing UDFs 396
Hive performance 399

TECHNIQUE 92 Partitioning 399
TECHNIQUE 93 Tuning Hive joins 404

CONTENTSxiv

9.2 Impala 409
Impala vs. Hive 410 ■ Impala basics 410

TECHNIQUE 94 Working with text 410
TECHNIQUE 95 Working with Parquet 412
TECHNIQUE 96 Refreshing metadata 413

User-defined functions in Impala 414

TECHNIQUE 97 Executing Hive UDFs in Impala 415

9.3 Spark SQL 416
Spark 101 417 ■ Spark on Hadoop 419 ■ SQL with Spark 419

TECHNIQUE 98 Calculating stock averages with Spark SQL 420
TECHNIQUE 99 Language-integrated queries 422
TECHNIQUE 100 Hive and Spark SQL 423

9.4 Chapter summary 423

10 Writing a YARN application 425
10.1 Fundamentals of building a YARN application 426

Actors 426 ■ The mechanics of a YARN application 427

10.2 Building a YARN application to collect cluster statistics 429
TECHNIQUE 101 A bare-bones YARN client 429
TECHNIQUE 102 A bare-bones ApplicationMaster 434
TECHNIQUE 103 Running the application and accessing logs 438
TECHNIQUE 104 Debugging using an unmanaged application

master 440

10.3 Additional YARN application capabilities 443
RPC between components 443 ■ Service discovery 444
Checkpointing application progress 444 ■ Avoiding split-brain 444
Long-running applications 444 ■ Security 445

10.4 YARN programming abstractions 445
Twill 446 ■ Spring 448 ■ REEF 450 ■ Picking a YARN
API abstraction 450

10.5 Summary 450

appendix Installing Hadoop and friends 451
index 475

bonus chapters available for download from www.manning.com/holmes2

chapter 11 Integrating R and Hadoop for statistics and more
chapter 12 Predictive analytics with Mahout

http://www.manning.com/holmes2/

xv

preface
I first encountered Hadoop in the fall of 2008 when I was working on an internet
crawl-and-analysis project at Verisign. We were making discoveries similar to those that
Doug Cutting and others at Nutch had made several years earlier about how to effi-
ciently store and manage terabytes of crawl-and-analyzed data. At the time, we were
getting by with our homegrown distributed system, but the influx of a new data stream
and requirements to join that stream with our crawl data couldn’t be supported by our
existing system in the required timeline.

 After some research, we came across the Hadoop project, which seemed to be a
perfect fit for our needs—it supported storing large volumes of data and provided a
compute mechanism to combine them. Within a few months, we built and deployed a
MapReduce application encompassing a number of MapReduce jobs, woven together
with our own MapReduce workflow management system, onto a small cluster of 18
nodes. It was a revelation to observe our MapReduce jobs crunching through our data
in minutes. Of course, what we weren’t expecting was the amount of time that we
would spend debugging and performance-tuning our MapReduce jobs. Not to men-
tion the new roles we took on as production administrators—the biggest surprise in
this role was the number of disk failures we encountered during those first few
months supporting production.

 As our experience and comfort level with Hadoop grew, we continued to build
more of our functionality using Hadoop to help with our scaling challenges. We also
started to evangelize the use of Hadoop within our organization and helped kick-start
other projects that were also facing big data challenges.

PREFACExvi

 The greatest challenge we faced when working with Hadoop, and specifically
MapReduce, was relearning how to solve problems with it. MapReduce is its own fla-
vor of parallel programming, and it’s quite different from the in-JVM programming
that we were accustomed to. The first big hurdle was training our brains to think
MapReduce, a topic which the book Hadoop in Action by Chuck Lam (Manning Publi-
cations, 2010) covers well.

 After one is used to thinking in MapReduce, the next challenge is typically related
to the logistics of working with Hadoop, such as how to move data in and out of HDFS
and effective and efficient ways to work with data in Hadoop. These areas of Hadoop
haven’t received much coverage, and that’s what attracted me to the potential of this
book—the chance to go beyond the fundamental word-count Hadoop uses and cover-
ing some of the trickier and dirtier aspects of Hadoop.

 As I’m sure many authors have experienced, I went into this project confidently
believing that writing this book was just a matter of transferring my experiences onto
paper. Boy, did I get a reality check, but not altogether an unpleasant one, because
writing introduced me to new approaches and tools that ultimately helped better my
own Hadoop abilities. I hope that you get as much out of reading this book as I did
writing it.

xvii

acknowledgments
First and foremost, I want to thank Michael Noll, who pushed me to write this book.
He provided invaluable insights into how to structure the content of the book,
reviewed my early chapter drafts, and helped mold the book. I can’t express how
much his support and encouragement has helped me throughout the process.

 I’m also indebted to Cynthia Kane, my development editor at Manning, who
coached me through writing this book and provided invaluable feedback on my work.
Among the many notable “aha!” moments I had when working with Cynthia, the big-
gest one was when she steered me into using visual aids to help explain some of the
complex concepts in this book.

 All of the Manning staff were a pleasure to work with, and a special shout out goes
to Troy Mott, Nick Chase, Tara Walsh, Bob Herbstman, Michael Stephens, Marjan
Bace, Maureen Spencer, and Kevin Sullivan.

 I also want to say a big thank you to all the reviewers of this book: Adam Kawa,
Andrea Tarocchi, Anna Lahoud, Arthur Zubarev, Edward Ribeiro, Fillipe Massuda,
Gerd Koenig, Jeet Marwah, Leon Portman, Mohamed Diouf, Muthuswamy Manigan-
dan, Rodrigo Abreu, and Serega Sheypack. Jonathan Siedman, the primary technical
reviewer, did a great job of reviewing the entire book.

 Many thanks to Josh Wills, the creator of Crunch, who kindly looked over the chap-
ter that covered that topic. And more thanks go to Josh Patterson, who reviewed my
Mahout chapter.

 Finally, a special thanks to my wife, Michal, who had to put up with a cranky husband
working crazy hours. She was a source of encouragement throughout the entire process.

xviii

about this book
Doug Cutting, the creator of Hadoop, likes to call Hadoop the kernel for big data,
and I would tend to agree. With its distributed storage and compute capabilities,
Hadoop is fundamentally an enabling technology for working with huge datasets.
Hadoop provides a bridge between structured (RDBMS) and unstructured (log files,
XML, text) data and allows these datasets to be easily joined together. This has evolved
from traditional use cases, such as combining OLTP and log files, to more sophisti-
cated uses, such as using Hadoop for data warehousing (exemplified by Facebook)
and the field of data science, which studies and makes new discoveries about data.

 This book collects a number of intermediary and advanced Hadoop examples and
presents them in a problem/solution format. Each technique addresses a specific task
you’ll face, like using Flume to move log files into Hadoop or using Mahout for pre-
dictive analysis. Each problem is explored step by step, and as you work through them,
you’ll find yourself growing more comfortable with Hadoop and at home in the world
of big data.

 This hands-on book targets users who have some practical experience with
Hadoop and understand the basic concepts of MapReduce and HDFS. Manning’s
Hadoop in Action by Chuck Lam contains the necessary prerequisites to understand
and apply the techniques covered in this book.

 Many techniques in this book are Java-based, which means readers are expected to
possess an intermediate-level knowledge of Java. An excellent text for all levels of Java
users is Effective Java, Second Edition by Joshua Bloch (Addison-Wesley, 2008).

ABOUT THIS BOOK xix

Roadmap

This book has 10 chapters divided into four parts.
 Part 1 contains two chapters that form the introduction to this book. They review

Hadoop basics and look at how to get Hadoop up and running on a single host. YARN,
which is new in Hadoop version 2, is also examined, and some operational tips are
provided for performing basic functions in YARN.

 Part 2, “Data logistics,” consists of three chapters that cover the techniques and
tools required to deal with data fundamentals, how to work with various data formats,
how to organize and optimize your data, and getting data into and out of Hadoop.
Picking the right format for your data and determining how to organize data in HDFS
are the first items you’ll need to address when working with Hadoop, and they’re cov-
ered in chapters 3 and 4 respectively. Getting data into Hadoop is one of the bigger
hurdles commonly encountered when working with Hadoop, and chapter 5 is dedi-
cated to looking at a variety of tools that work with common enterprise data sources.

 Part 3 is called “Big data patterns,” and it looks at techniques to help you work effec-
tively with large volumes of data. Chapter 6 covers how to represent data such as graphs
for use with MapReduce, and it looks at several algorithms that operate on graph data.
Chapter 7 looks at more advanced data structures and algorithms such as graph pro-
cessing and using HyperLogLog for working with large datasets. Chapter 8 looks at how
to tune, debug, and test MapReduce performance issues, and it also covers a number
of techniques to help make your jobs run faster.

 Part 4 is titled “Beyond MapReduce,” and it examines a number of technologies
that make it easier to work with Hadoop. Chapter 9 covers the most prevalent and
promising SQL technologies for data processing on Hadoop, and Hive, Impala, and
Spark SQL are examined. The final chapter looks at how to write your own YARN appli-
cation, and it provides some insights into some of the more advanced features you can
use in your applications.

 The appendix covers instructions for the source code that accompanies this book,
as well as installation instructions for Hadoop and all the other related technologies
covered in the book.

 Finally, there are two bonus chapters available from the publisher’s website at
www.manning.com/HadoopinPracticeSecondEdition: chapter 11 “Integrating R and
Hadoop for statistics and more” and chapter 12 “Predictive analytics with Mahout.”

What’s new in the second edition?

This second edition covers Hadoop 2, which at the time of writing is the current
production-ready version of Hadoop. The first edition of the book covered Hadoop 0.22
(Hadoop 1 wasn’t yet out), and Hadoop 2 has turned the world upside-down and
opened up the Hadoop platform to processing paradigms beyond MapReduce. YARN,
the new scheduler and application manager in Hadoop 2, is complex and new to the
community, which prompted me to dedicate a new chapter 2 to covering YARN basics
and to discussing how MapReduce now functions as a YARN application.

www.manning.com/HadoopinPracticeSecondEdition

ABOUT THIS BOOKxx

 Parquet has also recently emerged as a new way to store data in HDFS—its columnar
format can yield both space and time efficiencies in your data pipelines, and it’s quickly
becoming the ubiquitous way to store data. Chapter 4 includes extensive coverage of
Parquet, which includes how Parquet supports sophisticated object models such as Avro
and how various Hadoop tools can use Parquet.

 How data is being ingested into Hadoop has also evolved since the first edition,
and Kafka has emerged as the new data pipeline, which serves as the transport tier
between your data producers and data consumers, where a consumer would be a sys-
tem such as Camus that can pull data from Kafka into HDFS. Chapter 5, which covers
moving data into and out of Hadoop, now includes coverage of Kafka and Camus.

 There are many new technologies that YARN now can support side by side in the
same cluster, and some of the more exciting and promising technologies are covered
in the new part 4, titled “Beyond MapReduce,” where I cover some compelling new
SQL technologies such as Impala and Spark SQL. The last chapter, also new for this
edition, looks at how you can write your own YARN application, and it’s packed with
information about important features to support your YARN application.

Getting help

You’ll no doubt have many questions when working with Hadoop. Luckily, between
the wikis and a vibrant user community, your needs should be well covered:

■ The main wiki is located at http://wiki.apache.org/hadoop/, and it contains
useful presentations, setup instructions, and troubleshooting instructions.

■ The Hadoop Common, HDFS, and MapReduce mailing lists can all be found at
http://hadoop.apache.org/mailing_lists.html.

■ “Search Hadoop” is a useful website that indexes all of Hadoop and its ecosys-
tem projects, and it provides full-text search capabilities: http://search-
hadoop.com/.

■ You’ll find many useful blogs you should subscribe to in order to keep on top of
current events in Hadoop. This preface includes a selection of my favorites:

o Cloudera and Hortonworks are both prolific writers of practical applications
on Hadoop—reading their blogs is always educational: http://www.cloudera
.com/blog/ and http://hortonworks.com/blog/.

o Michael Noll is one of the first bloggers to provide detailed setup instructions
for Hadoop, and he continues to write about real-life challenges:
www.michael-noll.com/.

o There’s a plethora of active Hadoop Twitter users that you may want to follow,
including Arun Murthy (@acmurthy), Tom White (@tom_e_white), Eric Sam-
mer (@esammer), Doug Cutting (@cutting), and Todd Lipcon (@tlipcon).
The Hadoop project tweets on @hadoop.

http://search-hadoop.com/
http://search-hadoop.com/
http://www.cloudera.com/blog/
http://www.cloudera.com/blog/
www.michael-noll.com/

ABOUT THIS BOOK xxi

Code conventions and downloads

All source code in listings or in text is presented in a fixed-width font like this to
separate it from ordinary text. Code annotations accompany many of the listings,
highlighting important concepts.

 All of the text and examples in this book work with Hadoop 2.x, and most of the
MapReduce code is written using the newer org.apache.hadoop.mapreduce Map-
Reduce APIs. The few examples that use the older org.apache.hadoop.mapred pack-
age are usually the result of working with a third-party library or a utility that only
works with the old API.

 All of the code used in this book is available on GitHub at https://github.com/
alexholmes/hiped2 and also from the publisher’s website at www.manning.com/
HadoopinPracticeSecondEdition. The first section in the appendix shows you how to
download, install, and get up and running with the code.

Third-party libraries

I use a number of third-party libraries for convenience purposes. They’re included in
the Maven-built JAR, so there’s no extra work required to work with these libraries.

Datasets

Throughout this book, you’ll work with three datasets to provide some variety in the
examples. All the datasets are small to make them easy to work with. Copies of the
exact data used are available in the GitHub repository in the https://github.com/
alexholmes/hiped2/tree/master/test-data directory. I also sometimes use data that’s
specific to a chapter, and it’s available within chapter-specific subdirectories under the
same GitHub location.

NASDAQ financial stocks

I downloaded the NASDAQ daily exchange data from InfoChimps (www.infochimps
.com). I filtered this huge dataset down to just five stocks and their start-of-year values
from 2000 through 2009. The data used for this book is available on GitHub at https://
github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt.

 The data is in CSV form, and the fields are in the following order:

Symbol,Date,Open,High,Low,Close,Volume,Adj Close

Apache log data

I created a sample log file in Apache Common Log Format1 with some fake Class E
IP addresses and some dummy resources and response codes. The file is available
on GitHub at https://github.com/alexholmes/hiped2/blob/master/test-data/
apachelog.txt.

1 See http://httpd.apache.org/docs/1.3/logs.html#common.

https://github.com/alexholmes/hiped2
https://github.com/alexholmes/hiped2
https://github.com/alexholmes/hiped2/blob/master/test-data/apachelog.txt
https://github.com/alexholmes/hiped2/blob/master/test-data/apachelog.txt
https://github.com/alexholmes/hiped2/tree/master/test-data
https://github.com/alexholmes/hiped2/tree/master/test-data
https://github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt
https://github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt
www.manning.com/HadoopinPracticeSecondEdition
www.manning.com/HadoopinPracticeSecondEdition
www.infochimps.com
www.infochimps.com

ABOUT THIS BOOKxxii

Names

Names were retrieved from the U.S. government census at www.census.gov/genealogy/
www/data/1990surnames/dist.all.last, and this data is available at https://
github.com/alexholmes/hiped2/blob/master/test-data/names.txt.

Author Online

Purchase of Hadoop in Practice, Second Edition includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
HadoopinPractice, SecondEdition. This page provides information on how to get on
the forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum. It also provides links to the source code for the examples in the
book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the Author Online forum remains voluntary (and unpaid). We
suggest you try asking the author challenging questions lest his interest strays!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://www.manning.com/HadoopinPractice
http://www.manning.com/HadoopinPractice
https://github.com/alexholmes/hiped2/blob/master/test-data/names.txt
https://github.com/alexholmes/hiped2/blob/master/test-data/names.txt
www.census.gov/genealogy/www/data/1990surnames/dist.all.last
www.census.gov/genealogy/www/data/1990surnames/dist.all.last

xxiii

about the cover illustration
The figure on the cover of Hadoop in Practice, Second Edition is captioned “Momak from
Kistanja, Dalmatia.” The illustration is taken from a reproduction of an album of tra-
ditional Croatian costumes from the mid-nineteenth century by Nikola Arsenovic,
published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations
were obtained from a helpful librarian at the Ethnographic Museum in Split, itself sit-
uated in the Roman core of the medieval center of the town: the ruins of Emperor
Diocletian’s retirement palace from around AD 304. The book includes finely colored
illustrations of figures from different regions of Croatia, accompanied by descriptions
of the costumes and of everyday life.

 Kistanja is a small town located in Bukovica, a geographical region in Croatia. It is
situated in northern Dalmatia, an area rich in Roman and Venetian history. The word
“momak” in Croatian means a bachelor, beau, or suitor—a single young man who is of
courting age—and the young man on the cover, looking dapper in a crisp, white linen
shirt and a colorful, embroidered vest, is clearly dressed in his finest clothes, which
would be worn to church and for festive occasions—or to go calling on a young lady.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—
certainly for a more varied and fast-paced technological life.

ABOUT THE COVER ILLUSTRATIONxxiv

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Background
 and fundamentals

Part 1 of this book consists of chapters 1 and 2, which cover the important
Hadoop fundamentals.

 Chapter 1 covers Hadoop’s components and its ecosystem and provides
instructions for installing a pseudo-distributed Hadoop setup on a single host,
along with a system that will enable you to run all of the examples in the book.
Chapter 1 also covers the basics of Hadoop configuration, and walks you
through how to write and run a MapReduce job on your new setup.

 Chapter 2 introduces YARN, which is a new and exciting development in
Hadoop version 2, transitioning Hadoop from being a MapReduce-only system
to one that can support many execution engines. Given that YARN is new to the
community, the goal of this chapter is to look at some basics such as its compo-
nents, how configuration works, and also how MapReduce works as a YARN
application. Chapter 2 also provides an overview of some applications that YARN
has enabled to execute on Hadoop, such as Spark and Storm.

3

Hadoop in a heartbeat

We live in the age of big data, where the data volumes we need to work with on a
day-to-day basis have outgrown the storage and processing capabilities of a single
host. Big data brings with it two fundamental challenges: how to store and work
with voluminous data sizes, and more important, how to understand data and turn
it into a competitive advantage.

 Hadoop fills a gap in the market by effectively storing and providing computa-
tional capabilities for substantial amounts of data. It’s a distributed system made up
of a distributed filesystem, and it offers a way to parallelize and execute programs
on a cluster of machines (see figure 1.1). You’ve most likely come across Hadoop
because it’s been adopted by technology giants like Yahoo!, Facebook, and Twitter
to address their big data needs, and it’s making inroads across all industrial sectors.

 Because you’ve come to this book to get some practical experience with
Hadoop and Java,1 I’ll start with a brief overview and then show you how to install

This chapter covers
■ Examining how the core Hadoop system works
■ Understanding the Hadoop ecosystem
■ Running a MapReduce job

1 To benefit from this book, you should have some practical experience with Hadoop and understand the
basic concepts of MapReduce and HDFS (covered in Manning’s Hadoop in Action by Chuck Lam, 2010).
Further, you should have an intermediate-level knowledge of Java—Effective Java, 2nd Edition by Joshua
Bloch (Addison-Wesley, 2008) is an excellent resource on this topic.

4 CHAPTER 1 Hadoop in a heartbeat

Hadoop and run a MapReduce job. By the end of this chapter, you’ll have had a basic
refresher on the nuts and bolts of Hadoop, which will allow you to move on to the
more challenging aspects of working with it.

 Let’s get started with a detailed overview.

1.1 What is Hadoop?
Hadoop is a platform that provides both distributed storage and computational capa-
bilities. Hadoop was first conceived to fix a scalability issue that existed in Nutch,2 an
open source crawler and search engine. At the time, Google had published papers
that described its novel distributed filesystem, the Google File System (GFS), and
MapReduce, a computational framework for parallel processing. The successful
implementation of these papers’ concepts in Nutch resulted in it being split into two
separate projects, the second of which became Hadoop, a first-class Apache project.

 In this section we’ll look at Hadoop from an architectural perspective, examine
how industry uses it, and consider some of its weaknesses. Once we’ve covered this
background, we’ll look at how to install Hadoop and run a MapReduce job.

 Hadoop proper, as shown in figure 1.2, is a distributed master-slave architecture3

that consists of the following primary components:

2 The Nutch project, and by extension Hadoop, was led by Doug Cutting and Mike Cafarella.
3 A model of communication where one process, called the master, has control over one or more other pro-

cesses, called slaves.

Server cloud

Distributed computation

Distributed storage

Hadoop runs on
commodity hardware.

The computation tier is a
general-purpose scheduler and

a distributed processing
framework called MapReduce.

Storage is provided via
a distributed filesystem

called HDFS.

Figure 1.1 The Hadoop environment is a distributed system that runs on commodity hardware.

5What is Hadoop?

■ Hadoop Distributed File System (HDFS) for data storage.
■ Yet Another Resource Negotiator (YARN), introduced in Hadoop 2, a general-

purpose scheduler and resource manager. Any YARN application can run on a
Hadoop cluster.

■ MapReduce, a batch-based computational engine. In Hadoop 2, MapReduce is
implemented as a YARN application.

Traits intrinsic to Hadoop are data partitioning and parallel computation of large
datasets. Its storage and computational capabilities scale with the addition of hosts to
a Hadoop cluster; clusters with hundreds of hosts can easily reach data volumes in
the petabytes.

 In the first step in this section, we’ll examine the HDFS, YARN, and MapReduce
architectures.

1.1.1 Core Hadoop components

To understand Hadoop’s architecture we’ll start by looking at the basics of HDFS.

HDFS

HDFS is the storage component of Hadoop. It’s a distributed filesystem that’s modeled
after the Google File System (GFS) paper.4 HDFS is optimized for high throughput and
works best when reading and writing large files (gigabytes and larger). To support this
throughput, HDFS uses unusually large (for a filesystem) block sizes and data locality
optimizations to reduce network input/output (I/O).

 Scalability and availability are also key traits of HDFS, achieved in part due to data
replication and fault tolerance. HDFS replicates files for a configured number of times,
is tolerant of both software and hardware failure, and automatically re-replicates data
blocks on nodes that have failed.

4 See “The Google File System‚” http://research.google.com/archive/gfs.html.

The HDFS master is responsible
for partitioning the storage across
the slave nodes and keeping track

of where data is located.

The MapReduce master is
responsible for organizing where
computational work should be
scheduled on the slave nodes.

The YARN master performs
the actual scheduling of work

for YARN applications.

YARN slave MapReduce slave HDFS slave

YARN master MapReduce master HDFS master

YARN slave MapReduce slave HDFS slave

YARN slave MapReduce slave HDFS slave

Figure 1.2 High-level Hadoop 2 master-slave architecture

6 CHAPTER 1 Hadoop in a heartbeat

Figure 1.3 shows a logical representation of the components in HDFS: the NameNode
and the DataNode. It also shows an application that’s using the Hadoop filesystem
library to access HDFS.

 Hadoop 2 introduced two significant new features for HDFS—Federation and
High Availability (HA):

■ Federation allows HDFS metadata to be shared across multiple NameNode
hosts, which aides with HDFS scalability and also provides data isolation, allow-
ing different applications or teams to run their own NameNodes without fear of
impacting other NameNodes on the same cluster.

■ High Availability in HDFS removes the single point of failure that existed in
Hadoop 1, wherein a NameNode disaster would result in a cluster outage. HDFS
HA also offers the ability for failover (the process by which a standby Name-
Node takes over work from a failed primary NameNode) to be automated.

The HDFS NameNode keeps in memory the
metadata about the filesystem such as which
DataNodes manage the blocks for each file.

Files are made up of blocks, and each file
can be replicated multiple times, meaning
there are many identical copies of each

block for the file (by default, 3).

DataNodes communicate
with each other for
pipelining file reads

and writes.

Client
application

Hadoop
filesystem

client

HDFS clients talk to the
NameNode for metadata-related

activities and DataNodes for
reading and writing files.

/tmp/file1.txt Block A

Block B

DataNode 2

DataNode 3

DataNode 1

DataNode 3

NameNode

C

DataNode 1

D

B A

DataNode 2

C

D B

DataNode 3

A

C

Figure 1.3 An HDFS client communicating with the master NameNode and slave DataNodes

7What is Hadoop?

Now that you have a bit of HDFS knowledge, it’s time to look at YARN, Hadoop’s scheduler.

YARN

YARN is Hadoop’s distributed resource scheduler. YARN is new to Hadoop version 2
and was created to address challenges with the Hadoop 1 architecture:

■ Deployments larger than 4,000 nodes encountered scalability issues, and add-
ing additional nodes didn’t yield the expected linear scalability improvements.

■ Only MapReduce workloads were supported, which meant it wasn’t suited to
run execution models such as machine learning algorithms that often require
iterative computations.

For Hadoop 2 these problems were solved by extracting the scheduling function
from MapReduce and reworking it into a generic application scheduler, called YARN.
With this change, Hadoop clusters are no longer limited to running MapReduce
workloads; YARN enables a new set of workloads to be natively supported on Hadoop,
and it allows alternative processing models, such as graph processing and stream pro-
cessing, to coexist with MapReduce. Chapters 2 and 10 cover YARN and how to write
YARN applications.

 YARN’s architecture is simple because its primary role is to schedule and manage
resources in a Hadoop cluster. Figure 1.4 shows a logical representation of the core
components in YARN: the ResourceManager and the NodeManager. Also shown are
the components specific to YARN applications, namely, the YARN application client,
the ApplicationMaster, and the container.

 To fully realize the dream of a generalized distributed platform, Hadoop 2 intro-
duced another change—the ability to allocate containers in various configurations.

A YARN client is
responsible for creating
the YARN application.

Client ResourceManager

ApplicationMaster

NodeManager

Container

The ResourceManager is the
YARN master process and is responsible
for scheduling and managing resources,

called “containers.”

The ApplicationMaster is created by
the ResourceManager and is responsible
for requesting containers to perform

application-specific work.

The NodeManager is the slave
YARN process that runs on each node.

It is responsible for launching and
managing containers.

Containers are YARN
application-specific processes
that perform some function
pertinent to the application.

Figure 1.4 The logical YARN architecture showing typical communication between the core YARN
components and YARN application components

8 CHAPTER 1 Hadoop in a heartbeat

Hadoop 1 had the notion of “slots,” which were a fixed number of map and reduce pro-
cesses that were allowed to run on a single node. This was wasteful in terms of cluster
utilization and resulted in underutilized resources during MapReduce operations, and
it also imposed memory limits for map and reduce tasks. With YARN, each container
requested by an ApplicationMaster can have disparate memory and CPU traits, and this
gives YARN applications full control over the resources they need to fulfill their work.

 You’ll work with YARN in more detail in chapters 2 and 10, where you’ll learn how
YARN works and how to write a YARN application. Next up is an examination of
MapReduce, Hadoop’s computation engine.

MAPREDUCE

MapReduce is a batch-based, distributed computing framework modeled after
Google’s paper on MapReduce.5 It allows you to parallelize work over a large amount
of raw data, such as combining web logs with relational data from an OLTP database to
model how users interact with your website. This type of work, which could take days
or longer using conventional serial programming techniques, can be reduced to min-
utes using MapReduce on a Hadoop cluster.

 The MapReduce model simplifies parallel processing by abstracting away the com-
plexities involved in working with distributed systems, such as computational paral-
lelization, work distribution, and dealing with unreliable hardware and software. With
this abstraction, MapReduce allows the programmer to focus on addressing business
needs rather than getting tangled up in distributed system complications.

 MapReduce decomposes work submitted by a client into small parallelized map
and reduce tasks, as shown in figure 1.5. The map and reduce constructs used in

5 See “MapReduce: Simplified Data Processing on Large Clusters,” http://research.google.com/archive/
mapreduce.html.

Hadoop MapReduce
master

Map

Map

Map

Reduce

Client

Input
data

Output
data

The client submits
a MapReduce job.

MapReduce decomposes the
job into map and reduce tasks
and schedules them for remote

execution on the slave
nodes.

Job

Job parts Job parts

Reduce

Figure 1.5 A client submitting
a job to MapReduce, breaking
the work into small map and
reduce tasks

http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html

9What is Hadoop?

MapReduce are borrowed from those found in the Lisp functional programming lan-
guage, and they use a shared-nothing model to remove any parallel execution interde-
pendencies that could add unwanted synchronization points or state sharing.6

 The role of the programmer is to define map and reduce functions where the map
function outputs key/value tuples, which are processed by reduce functions to pro-
duce the final output. Figure 1.6 shows a pseudocode definition of a map function
with regard to its input and output.

 The power of MapReduce occurs between the map output and the reduce input in
the shuffle and sort phases, as shown in figure 1.7.

6 A shared-nothing architecture is a distributed computing concept that represents the notion that each node
is independent and self-sufficient.

The map function takes as input a key/value pair, which
represents a logical record from the input data source.

In the case of a file, this could be a line, or if the
input source is a table in a database, it could be a row.

list(key2, value2)map(key1, value1)

The map function produces zero or more output key/value pairs for
one input pair. For example, if the map function is a filtering

map function, it may only produce output if a certain condition is
met. Or it could be performing a demultiplexing operation, where

a single key/value yields multiple key/value output pairs.

Figure 1.6 A
logical view of the
map function that
takes a key/value
pair as input

The shuffle and sort phases are responsible for two primary activities: determining
the reducer that should receive the map output key/value pair (called partitioning);

and ensuring that all the input keys for a given reducer are sorted.

cat,doc1

dog,doc1

hamster,doc1

cat,doc2

dog,doc2

hampster,doc2

chipmunk,doc2

Map output Shuffle + sort

Mapper 1

Mapper 2

cat,list(doc1,doc2)

dog,list(doc1,doc2)

hamster,list(doc1,doc2)

chipmunk,list(doc2)
Reducer 2

Sorted reduce Input

 Map outputs for the same key (such as “hamster”)
go to the same reducer and are then combined to

form a single input record for the reducer.

Each reducer has all of
its input keys sorted.

Reducer 1

Reducer 3

Figure 1.7 MapReduce’s shuffle and sort phases

